A Perturbation Result for Dynamical Contact Problems

نویسندگان

  • CORINNA KLAPPROTH
  • PETER DEUFLHARD
  • ANTON SCHIELA
  • Corinna Klapproth
  • Peter Deuflhard
  • Anton Schiela
چکیده

This paper is intended to be a first step towards the continuous dependence of dynamical contact problems on the initial data as well as the uniqueness of a solution. Moreover, it provides the basis for a proof of the convergence of popular time integration schemes as the Newmark method. We study a frictionless dynamical contact problem between both linearly elastic and viscoelastic bodies which is formulated via the Signorini contact conditions. For viscoelastic materials fulfilling the Kelvin-Voigt constitutive law, we find a characterization of the class of problems which satisfy a perturbation result in a non-trivial mix of norms in function space. This characterization is given in the form of a stability condition on the contact stresses at the contact boundaries. Furthermore, we present perturbation results for two well-established approximations of the classical Signorini condition: The Signorini condition formulated in velocities and the model of normal compliance, both satisfying even a sharper version of our stability condition. AMS MSC 2000: 35L85, 74H55, 74M15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified homotopy perturbation method for solving non-linear oscillator's ‎equations

In this paper a new form of the homptopy perturbation method is used for solving oscillator differential equation, which yields the Maclaurin series of the exact solution. Nonlinear vibration problems and differential equation oscillations have crucial importance in all areas of science and engineering. These equations equip a significant mathematical model for dynamical systems. The accuracy o...

متن کامل

Application of He’s homotopy perturbation method for Schrodinger equation

In this paper, He’s homotopy perturbation method is applied to solve linear Schrodinger equation. The method yields solutions in convergent series forms with easily computable terms. The result show that these method is very convenient and can be applied to large class of problems. Some numerical examples are given to effectiveness of the method.

متن کامل

PROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS

We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...

متن کامل

Detecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary ‎conditions‎

Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...

متن کامل

Connecting Fast-slow Systems and Conley Index Theory via Transversality

Geometric Singular Perturbation Theory (GSPT) and Conley Index Theory are two powerful techniques to analyze dynamical systems. Conley already realized that using his index is easier for singular perturbation problems. In this paper, we will revisit Conley’s results and prove that the GSPT technique of Fenichel Normal Form can be used to simplify the application of Conley index techniques even ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008